考研数学微积分题海拾贝
设\( f(x) = \frac{1}{1-x^2+x^4}\),求\( f^{(100)}(0)\)
[collapse title=”解答”]
\[
f(x) = \frac{1}{1-x^2+x^4} = \frac{1+x^2}{1+x^6}
\]
由带有皮亚诺余项的麦克劳林公式,有
\[ f(x) = (1+x^2)(1-x^6 + x^{12} \cdots + x^{96} – x^{102} + o(x^{102}) ) \]
所以 \( f(x) \)展开式的100次项为\(0\),即:\( \frac{f^{(100)}(0)}{100!} = 0 \),所以\( f^{(100)}(0) =0 \)
[/collapse]
设\(f(x) = e^x \sin(2x) \),求\( f^{(4)}(0) \)
[collapse title=”解答”]
由麦克劳林公式
\[ f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f'(0)}{2!} x^2 \cdots + \frac{f'(0)}{n!} x^n + o(x^n)\]
则: \[ f(x)=(1+x+\frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3))(2x-\frac{1}{6}(2x)^3 + o(x^4) ) \]
所以\(f(x)\)展开式的4次项为: \[ \frac{1}{6}x^3 \cdot 2x – \frac{1}{6}(2x)^3\cdot x =- x^4\]
由于麦克劳林展开式中4次项为 \( \frac{f^{(4)}(0)}{4!}x^4 = -x^4\),所以系数 \( \frac{f^{(4)}(0)}{4!} = -1 \),即\( f^{(4)}(0) = -24 \)
[/collapse]